Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.663
Filtrar
1.
Physiol Plant ; 176(2): e14266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558467

RESUMO

Plant growth is restricted by salt stress, which is a significant abiotic factor, particularly during the seedling stage. The aim of this study was to investigate the mechanisms underlying peanut adaptation to salt stress by transcriptomic and metabolomic analysis during the seedling stage. In this study, phenotypic variations of FH23 and NH5, two peanut varieties with contrasting tolerance to salt, changed obviously, with the strongest differences observed at 24 h. FH23 leaves wilted and the membrane system was seriously damaged. A total of 1470 metabolites were identified, with flavonoids being the most common (21.22%). Multi-omics analyses demonstrated that flavonoid biosynthesis (ko00941), isoflavones biosynthesis (ko00943), and plant hormone signal transduction (ko04075) were key metabolic pathways. The comparison of metabolites in isoflavone biosynthesis pathways of peanut varieties with different salt tolerant levels demonstrated that the accumulation of naringenin and formononetin may be the key metabolite leading to their different tolerance. Using our transcriptomic data, we identified three possible reasons for the difference in salt tolerance between the two varieties: (1) differential expression of LOC112715558 (HIDH) and LOC112709716 (HCT), (2) differential expression of LOC112719763 (PYR/PYL) and LOC112764051 (ABF) in the abscisic acid (ABA) signal transduction pathway, then (3) differential expression of genes encoding JAZ proteins (LOC112696383 and LOC112790545). Key metabolites and candidate genes related to improving the salt tolerance in peanuts were screened to promote the study of the responses of peanuts to NaCl stress and guide their genetic improvement.


Assuntos
Arachis , Plântula , Arachis/genética , Plântula/genética , Cloreto de Sódio , Multiômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
2.
Mikrochim Acta ; 191(5): 256, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598148

RESUMO

A dual-signal ratiometric electrochemical aptasensor has been developed  for AFB1 detection using thionine/Au/zeolitic imidazolate framework-8 (Thi/Au/ZIF-8) nanomaterials and catalytic hairpin assembly (CHA) reaction. Thi/Au/ZIF-8 combined with DNA hairpin 2 (H2) was used as a signal probe. [Fe(CN)6]3-/4- was served as another signal probe, and the IThi/Au/ZIF-8/I[Fe(CN)6]3-/4- ratio was for the first time utilized to quantify AFB1. AFB1-induced CHA was used to expand the ratio of electrical signals. In the presence of AFB1, H2/Thi/Au/ZIF-8 bound to the electrode via CHA, enhanced  the current signal of Thi/Au/ZIF-8. H2 contained the DNA phosphate backbone hindered [Fe(CN)6]3-/4- redox reaction and resulted in a lower [Fe(CN)6]3-/4- current signal. This aptasensor exhibited high specificity for AFB1, a linear range of 0.1 pg mL-1 to 100 ng mL-1, and a detection limit of 0.089 pg mL-1. It demonstrated favorable sensitivity, selectivity, stability, and repeatability. The aptasensor was suitable for detecting AFB1 in peanuts and black tea and holds potential for real sample applications.


Assuntos
Aflatoxina B1 , Fenotiazinas , Zeolitas , Arachis , Catálise , DNA
3.
Plant Cell Rep ; 43(5): 124, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643320

RESUMO

KEY MESSAGE: Two peanut LEC1-type genes exhibit partial functional redundancy. AhNFYB10 could complement almost all the defective phenotypes of lec1-2 in terms of embryonic morphology, while AhNF-YB1 could partially affect these phenotypes. LEAFY COTYLEDON1 (LEC1) is a member of the nuclear factor Y (NF-Y) family of transcription factors and has been identified as a key regulator of embryonic development. In the present study, two LEC1-type genes from Arachis hypogeae were identified and designated as AhNF-YB1 and AhNF-YB10; these genes belong to subgenome A and subgenome B, respectively. The functions of AhNF-YB1 and AhNF-YB10 were investigated by complementation analysis of their defective phenotypes of the Arabidopsis lec1-2 mutant and by ectopic expression in wild-type Arabidopsis. The results indicated that both AhNF-YB1 and AhNF-YB10 participate in regulating embryogenesis, embryo development, and reserve deposition in cotyledons and that they have partial functional redundancy. In contrast, AhNF-YB10 complemented almost all the defective phenotypes of lec1-2 in terms of embryonic morphology and hypocotyl length, while AhNF-YB1 had only a partial effect. In addition, 30-40% of the seeds of the AhNF-YB1 transformants exhibited a decreasing germination ratio and longevity. Therefore, appropriate spatiotemporal expression of these genes is necessary for embryo morphogenesis at the early development stage and is responsible for seed maturation at the mid-late development stage. On the other hand, overexpression of AhNF-YB1 or AhNF-YB10 at the middle to late stages of Arabidopsis seed development improved the weight, oil content, and fatty acid composition of the transgenic seeds. Moreover, the expression levels of several genes associated with fatty acid synthesis and embryogenesis were significantly greater in developing AhNF-YB10-overexpressing seeds than in control seeds. This study provides a theoretical basis for breeding oilseed crops with high yields and high oil content.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arachis/genética , Arachis/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal , Ácidos Graxos/metabolismo , Desenvolvimento Embrionário , Lipídeos , Sementes/metabolismo
4.
Pediatr Allergy Immunol ; 35(4): e14115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566365

RESUMO

BACKGROUND: Introducing peanut products early can prevent peanut allergy (PA). The "Addendum guidelines for the prevention of PA in the United States" (PPA guidelines) recommend early introduction of peanut products to low and moderate risk infants and evaluation prior to starting peanut products for infants at high risk for PA (those with severe eczema and/or egg allergy). Rapid adoption of guidelines could aid in lowering the prevalence of PA. The Intervention to Reduce Early (Peanut) Allergy in Children (iREACH) trial was designed to promote PPA guideline adherence by pediatric clinicians. METHODS: A two-arm, cluster-randomized, controlled clinical trial was designed to measure the effectiveness of an intervention that included clinician education and accompanying clinical decision support tools integrated in electronic health records (EHR) versus standard care. Randomization was at the practice level (n = 30). Primary aims evaluated over an 18-month trial period assess adherence to the PPA guidelines using EHR documentation at 4- and 6-month well-child care visits aided by natural language processing. A secondary aim will evaluate the effectiveness in decreasing the incidence of PA by age 2.5 years using EHR documentation and caregiver surveys. The unit of observation for evaluations are individual children with clustering at the practice level. CONCLUSION: Application of this intervention has the potential to inform the development of strategies to speed implementation of PPA guidelines.


Assuntos
Hipersensibilidade a Ovo , Hipersensibilidade a Amendoim , Lactente , Criança , Humanos , Estados Unidos , Pré-Escolar , Hipersensibilidade a Amendoim/epidemiologia , Hipersensibilidade a Amendoim/prevenção & controle , Arachis , Imunoglobulina E
5.
Nat Commun ; 15(1): 2924, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575565

RESUMO

Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions.


Assuntos
Fabaceae , Fixação de Nitrogênio , Fabaceae/microbiologia , Nodulação , Solo , Microbiologia do Solo , Simbiose , Arachis , Verduras , Nitrogênio , Nódulos Radiculares de Plantas/microbiologia
6.
BMC Plant Biol ; 24(1): 244, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575936

RESUMO

BACKGROUND: This study aims to decipher the genetic basis governing yield components and quality attributes of peanuts, a critical aspect for advancing molecular breeding techniques. Integrating genotype re-sequencing and phenotypic evaluations of seven yield components and two grain quality traits across four distinct environments allowed for the execution of a genome-wide association study (GWAS). RESULTS: The nine phenotypic traits were all continuous and followed a normal distribution. The broad heritability ranged from 88.09 to 98.08%, and the genotype-environment interaction effects were all significant. There was a highly significant negative correlation between protein content (PC) and oil content (OC). The 10× genome re-sequencing of 199 peanut accessions yielded a total of 631,988 high-quality single nucleotide polymorphisms (SNPs), with 374 significant SNP loci identified in association with the nine traits of interest. Notably, 66 of these pertinent SNPs were detected in multiple environments, and 48 of them were linked to multiple traits of interest. Five loci situated on chromosome 16 (Chr16) exhibited pleiotropic effects on yield traits, accounting for 17.64-32.61% of the observed phenotypic variation. Two loci on Chr08 were found to be strongly associated with protein and oil contents, accounting for 12.86% and 14.06% of their respective phenotypic variations, respectively. Linkage disequilibrium (LD) block analysis of these seven loci unraveled five nonsynonymous variants, leading to the identification of one yield-related candidate gene and two quality-related candidate genes. The correlation between phenotypic variation and SNP loci in these candidate genes was validated by Kompetitive allele-specific PCR (KASP) marker analysis. CONCLUSIONS: Overall, molecular markers were developed for genetic loci associated with yield and quality traits through a GWAS investigation of 199 peanut accessions across four distinct environments. These molecular tools can aid in the development of desirable peanut germplasm with an equilibrium of yield and quality through marker-assisted breeding.


Assuntos
Arachis , Estudo de Associação Genômica Ampla , Arachis/genética , Locos de Características Quantitativas/genética , Melhoramento Vegetal , Mapeamento Cromossômico/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
7.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611882

RESUMO

This study evaluated the impact of pulsed electric fields (PEFs) combined with three-phase partitioning (TPP) extraction methods on the physicochemical properties, functional properties, and structural characterization of the soluble dietary fiber (SDF) derived from peanut shells (PS). The findings of this study indicated that the application of a PEF-TPP treatment leads to a notable improvement in both the extraction yield and purity of SDF. Consequently, the PEF-TPP treatment resulted in the formation of more intricate and permeable structures, a decrease in molecular weight, and an increase in thermal stability compared to SDFs without TPP treatment. An analysis revealed that the PEF-TPP method resulted in an increase in the levels of arabinose and galacturonic acid, leading to enhanced antioxidant capacities. Specifically, the IC50 values were lower in SDFs which underwent PEF-TPP (4.42 for DPPH and 5.07 mg/mL for ABTS) compared to those precipitated with 40% alcohol (5.54 mg/mL for DPPH, 5.56 mg/mL for ABTS) and PEF75 (6.60 mg/mL for DPPH, 7.61 mg/mL for ABTS), respectively. Notably, the SDFs which underwent PEF-TPP demonstrated the highest water- and oil-holding capacity, swelling capacity, emulsifying activity, emulsion stability, glucose adsorption, pancreatic lipase inhibition, cholesterol adsorption, nitric ion adsorption capacity, and the least gelation concentration. Based on the synthesis scores obtained through PCA (0.536 > -0.030 > -0.33), which indicated that SDFs which underwent PEF-TPP exhibited the highest level of quality, the findings indicate that PEF-TPP exhibits potential and promise as a method for preparing SDFs.


Assuntos
Antioxidantes , Arachis , Benzotiazóis , Ácidos Sulfônicos , Adsorção , Fibras na Dieta
8.
Sci Data ; 11(1): 364, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605113

RESUMO

Peanut (Arachis hypogaea) showcases geocarpic behavior, transitioning from aerial flowering to subterranean seed development. We recently obtained an atavistic variant of this species, capable of producing aerial and subterranean pods on a single plant. Notably, although these pod types share similar vigor levels, they exhibit distinct differences in their physical aspects, such as pod size, color, and shell thickness. We constructed 63 RNA-sequencing datasets, comprising three biological replicates for each of 21 distinct tissues spanning six developmental stages for both pod types, providing a rich tapestry of the pod development process. This comprehensive analysis yielded an impressive 409.36 Gb of clean bases, facilitating the detection of 42,401 expressed genes. By comparing the transcriptomic data of the aerial and subterranean pods, we identified many differentially expressed genes (DEGs), highlighting their distinct developmental pathways. By providing a detailed workflow from the initial sampling to the final DEGs, this study serves as an important resource, paving the way for future research into peanut pod development and aiding transcriptome-based expression profiling and candidate gene identification.


Assuntos
Arachis , Regulação da Expressão Gênica de Plantas , Transcriptoma , Arachis/genética , Arachis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Sementes/genética , Sementes/crescimento & desenvolvimento
9.
PLoS One ; 19(4): e0299992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625995

RESUMO

The genetic diversity that exists in natural populations of Arachis duranensis, the wild diploid donor of the A subgenome of cultivated tetraploid peanut, has the potential to improve crop adaptability, resilience to major pests and diseases, and drought tolerance. Despite its potential value for peanut improvement, limited research has been focused on the association between allelic variation, environmental factors, and response to early (ELS) and late leaf spot (LLS) diseases. The present study implemented a landscape genomics approach to gain a better understanding of the genetic variability of A. duranensis represented in the ex-situ peanut germplasm collection maintained at the U.S. Department of Agriculture, which spans the entire geographic range of the species in its center of origin in South America. A set of 2810 single nucleotide polymorphism (SNP) markers allowed a high-resolution genome-wide characterization of natural populations. The analysis of population structure showed a complex pattern of genetic diversity with five putative groups. The incorporation of bioclimatic variables for genotype-environment associations, using the latent factor mixed model (LFMM2) method, provided insights into the genomic signatures of environmental adaptation, and led to the identification of SNP loci whose allele frequencies were correlated with elevation, temperature, and precipitation-related variables (q < 0.05). The LFMM2 analysis for ELS and LLS detected candidate SNPs and genomic regions on chromosomes A02, A03, A04, A06, and A08. These findings highlight the importance of the application of landscape genomics in ex situ collections of peanut and other crop wild relatives to effectively identify favorable alleles and germplasm for incorporation into breeding programs. We report new sources of A. duranensis germplasm harboring adaptive allelic variation, which have the potential to be utilized in introgression breeding for a single or multiple environmental factors, as well as for resistance to leaf spot diseases.


Assuntos
Arachis , Resistência à Doença , Arachis/genética , Resistência à Doença/genética , Melhoramento Vegetal , Genômica , Polimorfismo de Nucleotídeo Único , Genoma de Planta
10.
Microb Ecol ; 87(1): 60, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630182

RESUMO

Microorganisms produce siderophores, which are low-molecular-weight iron chelators when iron availability is limited. The present analyzed the role of LNPF1 as multifarious PGPR for improving growth parameters and nutrient content in peanut and soil nutrients. Such multifarious PGPR strains can be used as effective bioinoculants for peanut farming. In this work, rhizosphere bacteria from Zea mays and Arachis hypogaea plants in the Salem area of Tamil Nadu, India, were isolated and tested for biochemical attributes and characteristics that stimulate plant growth, such as the production of hydrogen cyanide, ammonia (6 µg/mL), indole acetic acid (76.35 µg/mL), and solubilizing phosphate (520 µg/mL). The 16S rRNA gene sequences identified the isolate LNPF1 as Pseudomonas fluorescens with a similarity percentage of 99% with Pseudomonas sp. Isolate LNPF1 was evaluated for the production of siderophore. Siderophore-rich supernatant using a Sep Pack C18 column and Amberlite-400 Resin Column (λmax 264) produced 298 mg/L and 50 mg/L of siderophore, respectively. The characterization of purified siderophore by TLC, HPLC, FTIR, and 2D-NMR analysis identified the compound as desferrioxamine, a hydroxamate siderophore. A pot culture experiment determined the potential of LNPF1 to improve iron and oil content and photosynthetic pigments in Arachis hypogaea L. and improve soil nutrient content. Inoculation of A. hypogea seeds with LNPF1 improved plant growth parameters such as leaf length (60%), shoot length (22%), root length (54.68%), fresh weight (47.28%), dry weight (37%), and number of nuts (66.66) compared to the control (untreated seeds). This inoculation also improved leaf iron content (43.42), short iron content (38.38%), seed iron (46.72%), seed oil (31.68%), carotenoid (64.40%), and total chlorophyll content (98.%) compared to control (untreated seeds). Bacterized seeds showed a substantial increase in nodulation (61.65%) and weight of individual nodules (95.97) vis-à-vis control. The results of the present study indicated that P. fluorescens might be utilized as a potential bioinoculant to improve growth, iron content, oil content, number of nuts and nodules of Arachishypogaea L., and enrich soil nutrients.


Assuntos
Arachis , Pseudomonas fluorescens , Desferroxamina , Índia , RNA Ribossômico 16S/genética , Nutrientes , Sideróforos , Ferro , Solo
11.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1089-1101, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658151

RESUMO

Vitamin C plays an important role in plant antioxidation, photosynthesis, growth and development, and metabolism. In this study, a gene AhPMM, which is involved in vitamin C synthesis and responds significantly to low temperature, NaCl, polyethylene glycol (PEG) and abscisic acid (ABA) treatments, was cloned from peanut. An AhPMM overexpression vector was constructed, and transferred to a peanut variety Junanxiaohong using the pollen tube injection method. PCR test on the T3 generation transgenic peanut plants showed a transgenics positive rate of 42.3%. HPLC was used to determine the content of reducing vitamin C (AsA) and total vitamin C in the leaves of transgenic plants. The results showed that the content of AsA in some lines increased significantly, up to 1.90 times higher than that of the control, and the total vitamin content increased by up to 1.63 times compared to that of the control. NaCl and ABA tolerance tests were carried out on transgenic seeds. The results showed that the salt tolerance of transgenic seeds was significantly enhanced and the sensitivity to ABA was weakened compared to that of the non-transgenic control. Moreover, the salt tolerance of the transgenic plants was also significantly enhanced compared to that of the non-transgenic control. The above results showed that AhPMM gene not only increased the vitamin C content of peanut, but also increased the salt tolerance of transgenic peanut seeds and plants. This study may provide a genetic source for the molecular breeding of peanut for enhanced salt tolerance.


Assuntos
Ácido Abscísico , Arachis , Ácido Ascórbico , Plantas Geneticamente Modificadas , Estresse Fisiológico , Arachis/genética , Arachis/metabolismo , Ácido Ascórbico/biossíntese , Ácido Ascórbico/metabolismo , Plantas Geneticamente Modificadas/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/biossíntese , Cloreto de Sódio/farmacologia
12.
BMC Genomics ; 25(1): 259, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454335

RESUMO

Sugar Will Eventually be Exported Transporter (SWEET) proteins are highly conserved in various organisms and play crucial roles in sugar transport processes. However, SWEET proteins in peanuts, an essential leguminous crop worldwide, remain lacking in systematic characterization. Here, we identified 94 SWEET genes encoding the conservative MtN3/saliva domains in three peanut species, including 47 in Arachis hypogea, 23 in Arachis duranensis, and 24 in Arachis ipaensis. We observed significant variations in the exon-intron structure of these genes, while the motifs and domain structures remained highly conserved. Phylogenetic analysis enabled us to categorize the predicted 286 SWEET proteins from eleven species into seven distinct groups. Whole genome duplication/segment duplication and tandem duplication were the primary mechanisms contributing to the expansion of the total number of SWEET genes. In addition, an investigation of cis-elements in the potential promoter regions and expression profiles across 22 samples uncovered the diverse expression patterns of AhSWEET genes in peanuts. AhSWEET24, with the highest expression level in seeds from A. hypogaea Tifrunner, was observed to be localized on both the plasma membrane and endoplasmic reticulum membrane. Moreover, qRT-PCR results suggested that twelve seed-expressed AhSWEET genes were important in the regulation of seed development across four different peanut varieties. Together, our results provide a foundational basis for future investigations into the functions of SWEET genes in peanuts, especially in the process of seed development.


Assuntos
Arachis , Família Multigênica , Arachis/genética , Arachis/metabolismo , Filogenia , Sementes , Açúcares/metabolismo , Proteínas de Plantas/metabolismo
13.
Sci Rep ; 14(1): 7188, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531917

RESUMO

The knowledge of proper fertigation across various irrigation levels is necessary for maximizing peanut yield and irrigation use efficiency in arid areas, and it also can effectively alleviate the risk of nutrient deficiency induced by water stress. This study evaluated the effectiveness of cobalt combined with two zinc application methods on peanut nutrient uptake, yield, and irrigation water use efficiency across varying irrigation levels. A split-split plot experiment was carried out in 2021 and 2022. Three peanut gross water requirement (GWR) levels (100%, 80%, and 60%) were designated for main plots. Subplots featured plants treated with either 0 or 7.5 mg L-1 of cobalt. The sub-sub plots assessed chelated zinc effects at rates of 0 and 2 g L-1 via foliar and soil applications. In comparison to the control (100% GWR), nutrient uptake decreased, with sodium being the exception, and there was an increase in soil pH at 60% GWR. The results showed also significant reductions in yield and water use by approximately 60.3% and 38.1%, respectively. At this irrigation level, applying zinc via soil, either alone or combined with cobalt, led to significant yield increases of 89.7% and 191.3% relative to the control. Also, it's crucial to note that cobalt application negatively affected iron and copper at 60% GWR, but this impact was lessened with soil-applied zinc. Hence, under a similar circumstance, treating stressed peanut plants with additional foliar applications of iron + copper and applying zinc via soil, could enhance nutrient uptake and improve yield. On the other hand, at 80% GWR, a combination of foliar-applied zinc and cobalt, had a tremendous impact on the absorption of (nitrogen, phosphorus, magnesium, and zinc), resulting in enhanced agronomic traits and decreased water losses. Additionally, at this irrigation level, foliar zinc application alone yielded a 32.4% increase compared to the 80% GWR control. When combined with cobalt, there was a 70.0% surge in water use. Based on this knowledge, the study suggests using 80% GWR and treating peanut plants with a combination of foliar-applied zinc and cobalt. This strategy aids plants in countering the adverse effects of water stress, ultimately leading to enhanced yield and irrigation water use efficiency.


Assuntos
Arachis , Zinco , Desidratação , Cobre , Solo , Nutrientes , Ferro , Irrigação Agrícola
14.
Toxins (Basel) ; 16(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38535807

RESUMO

During an experiment where we were cultivating aflatoxigenic Aspergillus flavus on peanuts, we accidentally discovered that a bacterium adhering to the peanut strongly inhibited aflatoxin (AF) production by A. flavus. The bacterium, isolated and identified as Klebsiella aerogenes, was found to produce an AF production inhibitor. Cyclo(l-Ala-Gly), isolated from the bacterial culture supernatant, was the main active component. The aflatoxin production-inhibitory activity of cyclo(l-Ala-Gly) has not been reported. Cyclo(l-Ala-Gly) inhibited AF production in A. flavus without affecting its fungal growth in a liquid medium with stronger potency than cyclo(l-Ala-l-Pro). Cyclo(l-Ala-Gly) has the strongest AF production-inhibitory activity among known AF production-inhibitory diketopiperazines. Related compounds in which the methyl moiety in cyclo(l-Ala-Gly) is replaced by ethyl, propyl, or isopropyl have shown much stronger activity than cyclo(l-Ala-Gly). Cyclo(l-Ala-Gly) did not inhibit recombinant glutathione-S-transferase (GST) in A. flavus, unlike (l-Ala-l-Pro), which showed that the inhibition of GST was not responsible for the AF production-inhibition of cyclo(l-Ala-Gly). When A. flavus was cultured on peanuts dipped for a short period of time in a dilution series bacterial culture broth, AF production in the peanuts was strongly inhibited, even at a 1 × 104-fold dilution. This strong inhibitory activity suggests that the bacterium is a candidate for an effective biocontrol agent for AF control.


Assuntos
Aflatoxinas , Aspergillus flavus , Klebsiella , Dipeptídeos , Arachis , Glutationa Transferase
15.
Genes (Basel) ; 15(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540324

RESUMO

Phenylalanine ammonia-lyase (PAL) is an essential enzyme in the phenylpropanoid pathway, in which numerous aromatic intermediate metabolites play significant roles in plant growth, adaptation, and disease resistance. Cultivated peanuts are highly susceptible to Aspergillus flavus L. infection. Although PAL genes have been characterized in various major crops, no systematic studies have been conducted in cultivated peanuts, especially in response to A. flavus infection. In the present study, a systematic genome-wide analysis was conducted to identify PAL genes in the Arachis hypogaea L. genome. Ten AhPAL genes were distributed unevenly on nine A. hypogaea chromosomes. Based on phylogenetic analysis, the AhPAL proteins were classified into three groups. Structural and conserved motif analysis of PAL genes in A. hypogaea revealed that all peanut PAL genes contained one intron and ten motifs in the conserved domains. Furthermore, synteny analysis indicated that the ten AhPAL genes could be categorized into five pairs and that each AhPAL gene had a homologous gene in the wild-type peanut. Cis-element analysis revealed that the promoter region of the AhPAL gene family was rich in stress- and hormone-related elements. Expression analysis indicated that genes from Group I (AhPAL1 and AhPAL2), which had large number of ABRE, WUN, and ARE elements in the promoter, played a strong role in response to A. flavus stress.


Assuntos
Arachis , Aspergillus flavus , Aspergillus flavus/genética , Arachis/genética , Arachis/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Filogenia , Regiões Promotoras Genéticas
16.
Genes (Basel) ; 15(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540363

RESUMO

A-genome Arachis species (AA; 2n = 2x = 20) are commonly used as secondary germplasm sources in cultivated peanut breeding, Arachis hypogaea L. (AABB; 2n = 4x = 40), for the introgression of various biotic and abiotic stress resistance genes. Genome doubling is critical to overcoming the hybridization barrier of infertility that arises from ploidy-level differences between wild germplasm and cultivated peanuts. To develop improved genome doubling methods, four trials of various concentrations of the mitotic inhibitor treatments colchicine, oryzalin, and trifluralin were tested on the seedlings and seeds of three A-genome species, A. cardenasii, A. correntina, and A. diogoi. A total of 494 seeds/seedlings were treated in the present four trials, with trials 1 to 3 including different concentrations of the three chemical treatments on seedlings, and trial 4 focusing on the treatment period of 5 mM colchicine solution treatment of seeds. A small number of tetraploids were produced from the colchicine and oryzalin gel treatments of seedlings, but all these tetraploid seedlings reverted to diploid or mixoploid states within six months of treatment. In contrast, the 6-h colchicine solution treatment of seeds showed the highest tetraploid conversion rate (6-13% of total treated seeds or 25-40% of surviving seedlings), and the tetraploid plants were repeatedly tested as stable tetraploids. In addition, visibly and statistically larger leaves and flowers were produced by the tetraploid versions of these three species compared to their diploid versions. As a result, stable tetraploid plants of each A-genome species were produced, and a 5 mM colchicine seed treatment is recommended for A-genome and related wild Arachis species genome doubling.


Assuntos
Arachis , Dinitrobenzenos , Fabaceae , Sulfanilamidas , Arachis/genética , Tetraploidia , Genoma de Planta , Poliploidia , Melhoramento Vegetal , Fabaceae/genética , Colchicina/farmacologia
17.
Chemosphere ; 353: 141645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452977

RESUMO

Cadmium (Cd) toxicity has cropped up as an important menace in the soil-plant system. The use of industrial by-products to immobilise Cd in situ in polluted soils is an interesting remediation strategy. In the current investigation, two immobilizing amendments of Cd viz., Limestone (traditionally used) and Yellow gypsum (industrial by-product) have been used through a green-house pot culture experiment. Soil samples were collected from four locations based on four graded levels of DTPA extractable Cd as Site 1 (0.43 mg kg-1), Site 2 (0.92 mg kg-1), Site 3 (1.77 mg kg-1) and Site 4 (4.48 mg kg-1). The experiment was laid out in a thrice replicated Factorial Complete Randomized Design, with one factor as limestone (0, 250, 500 mg kg-1) and the other being yellow gypsum (0, 250, 500 mg kg-1) on the collected soils and groundnut was grown as a test crop. Results revealed that the DTPA-extractable Cd content in soil and Cd concentration in plants decreased significantly with the increasing doses of amendments irrespective of initial soil available Cd and types of amendment used. The effect of amendment was soil specific and in case of Site 1 (low initial Cd) the effect was more prominent. The reduction in DTPA-extractable Cd in combined application of limestone and yellow gypsum @500 mg kg-1 over the absolute control in soil under groundnut for the sites was by far the highest with the values of 83.72%, 77.17%, 48.59% and 40.63% respectively. With the combined application, Target Cancer Risk (TCR) of Cd was also reduced. Hence, combined application of limestone and yellow gypsum can be beneficial in the long run for mitigating Cd pollution.


Assuntos
Arachis , Cádmio , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Carbonato de Cálcio , Sulfato de Cálcio , Ácido Pentético , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Instalações de Eliminação de Resíduos
18.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38520150

RESUMO

AIMS: In this study, the control effects of synthetic microbial communities composed of peanut seed bacteria against seed aflatoxin contamination caused by Aspergillus flavus and root rot by Fusarium oxysporum were evaluated. METHODS AND RESULTS: Potentially conserved microbial synthetic communities (C), growth-promoting synthetic communities (S), and combined synthetic communities (CS) of peanut seeds were constructed after 16S rRNA Illumina sequencing, strain isolation, and measurement of plant growth promotion indicators. Three synthetic communities showed resistance to root rot and CS had the best effect after inoculating into peanut seedlings. This was achieved by increased defense enzyme activity and activated salicylic acid (SA)-related, systematically induced resistance in peanuts. In addition, CS also inhibited the reproduction of A. flavus on peanut seeds and the production of aflatoxin. These effects are related to bacterial degradation of toxins and destruction of mycelia. CONCLUSIONS: Inoculation with a synthetic community composed of seed bacteria can help host peanuts resist the invasion of seeds by A. flavus and seedlings by F. oxysporum and promote the growth of peanut seedlings.


Assuntos
Aflatoxinas , Sementes , RNA Ribossômico 16S/genética , Sementes/microbiologia , Fungos/genética , Plântula/microbiologia , Bactérias/genética , Arachis/microbiologia
19.
Int J Biol Macromol ; 264(Pt 2): 130613, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447836

RESUMO

The 2S albumins Ara h 2 and Ara h 6 have been shown to be the most important source of allergenicity in peanut. Several isoforms of these allergens have been described. Using extraction and liquid chromatography we isolated proteins with homology to Ara h 2 and characterized hitherto unknown Ara h 2 proteoforms with additional post-translational cleavage. High-resolution mass spectrometry located the cleavage site on the non-structured loop of Ara h 2 while far UV CD spectroscopy showed a comparable structure to Ara h 2. The cleaved forms of Ara h 2 were present in genotypes of peanut commonly consumed. Importantly, we revealed that newly identified Ara h 2 cleaved proteoforms showed comparable IgE-binding using sera from 28 peanut-sensitized individuals, possessed almost the same IgE binding potency and are likely similarly allergenic as intact Ara h 2. This makes these newly identified forms relevant proteoforms of peanut allergen Ara h 2.


Assuntos
Hipersensibilidade a Amendoim , Proteínas de Plantas , Humanos , Proteínas de Plantas/química , Antígenos de Plantas/química , Imunoglobulina E/metabolismo , Albuminas 2S de Plantas/química , Glicoproteínas/química , Alérgenos/química , Arachis/química
20.
Food Chem ; 447: 138915, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452539

RESUMO

Peanuts, sourced from various regions, exhibit noticeable differences in quality owing to the impact of their natural environments. This study proposes a fast and nondestructive detection method to identify peanut quality by combining an electronic nose system with a hyperspectral system. First, the electronic nose and hyperspectral systems are used to gather gas and spectral information from peanuts. Second, a module for extracting gas and spectral information is designed, combining the lightweight multi-head transposed attention mechanism (LMTA) and convolutional computation. The fusion of gas and spectral information is achieved through matrix combination and lightweight convolution. A hybrid neural network, named UnitFormer, is designed based on the information extraction and fusion processes. UnitFormer demonstrates an accuracy of 99.06 %, a precision of 99.12 %, and a recall of 99.05 %. In conclusion, UnitFormer effectively distinguishes quality differences among peanuts from various regions, offering an effective technological solution for quality supervision in the food market.


Assuntos
Arachis , Nariz Eletrônico , Meio Ambiente , Alimentos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...